logo
Normal view MARC view ISBD view

Tectonic and kinematic evolution within mid-crustal orogenic root zones : A case study from the Caledonides of northwestern Ireland

By: Alsop, G. I.
Contributor(s): Bryson, R | Hutton, D. H. W.
Material type: ArticleArticleDescription: 193-211p ; Illustration.Subject(s): Tectonic evolution - Mid crustal orogenic root zone - Northwestern Ireland | Kinematic evolution - Mid crustal orogenic root zone - Northwestern Ireland | Case study - Caledonidess crustal orogenic root zone - Northwestern Ireland | Slieve leugue peninsula - Northwestern Ireland In: Geological magazine : Vol. 138 Iss. 1-6 Year. 2001Summary: Abstract The Slieve League Peninsula of northwest Ireland lies on the western limb of a major orogenic strike-swing in which regional foliation trends have deviated from the northeast–southwest trends typical of much of Scotland, to west–east orientations. Across-strike coastal exposures on the western tip of the peninsula through Neoproterozoic Dalradian metasediments enable a detailed examination and analysis of the structural evolution of a Caledonian orogenic root zone which has been previously correlated with the Loch Awe Syncline of southwest Scotland. Minor structural development may be evaluated in terms of regional strain profiles and overprinting relationships. Over much of the area, a composite, steep northeast–southwest-trending S2–S3 foliation containing a gently southwest-plunging quartz mineral elongation lineation is the dominant fabric at outcrop, and is associated with MP2 almandine–amphibolite facies metamorphism. F2 folds are isoclinal with curvilinear hinges and similar geometry. They typically plunge steeply towards the southwest and display variable (dextral) or north-directed vergence, whilst minor F3 fold hinges plunge moderately towards the southwest and typically verge (sinistrally) towards the south. Major, composite D1–D3 tectonic slides are developed in the Argyll Group. Structural and stratigraphic relationships indicate that D1 induced large-scale reversals in younging across tectonic slides, resulting in reversals in subsequent F2 and F3 facing patterns. Tectonic sliding is associated with an intensification of strain demonstrated by increasingly intrafolial and curvilinear folding, together with extensional crenulations, sheared quartz pods and metre-scale asymmetric boudinage of metadolerites, all of which indicate dextral (D2) and sinistral (D3) shear. After unfolding subsequent folds (F4), this corresponds to top-to-the-north (D2) and top-to-the-south (D3) translations. D4 results in regionally northwest-verging structures, with minor crenulations and the S4 cleavage transecting fold hinges in an anticlockwise sense, suggesting a dextral component of deformation. The detailed kinematic data indicate that the overall geometry of this western, deep-level arm of the root zone is not a product of the classic mushrooming fountain of nappes model, but rather major interference between consistent northerly directed D2 thrusting and a later phase of southeast-directed (D3) retrocharriage (‘back-folding’) which intensifies towards the south.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode
Article Article Library and Information Centre
Periodical Section
Bound Journal Collection Not for loan 002522_20
Serials/Scientific Journal Serials/Scientific Journal Library and Information Centre
Periodical Section
Bound Journal Collection 550 GEO (Browse shelf) Available 002522

Abstract
The Slieve League Peninsula of northwest Ireland lies on the western limb of a major orogenic strike-swing in which regional foliation trends have deviated from the northeast–southwest trends typical of much of Scotland, to west–east orientations. Across-strike coastal exposures on the western tip of the peninsula through Neoproterozoic Dalradian metasediments enable a detailed examination and analysis of the structural evolution of a Caledonian orogenic root zone which has been previously correlated with the Loch Awe Syncline of southwest Scotland. Minor structural development may be evaluated in terms of regional strain profiles and overprinting relationships. Over much of the area, a composite, steep northeast–southwest-trending S2–S3 foliation containing a gently southwest-plunging quartz mineral elongation lineation is the dominant fabric at outcrop, and is associated with MP2 almandine–amphibolite facies metamorphism. F2 folds are isoclinal with curvilinear hinges and similar geometry. They typically plunge steeply towards the southwest and display variable (dextral) or north-directed vergence, whilst minor F3 fold hinges plunge moderately towards the southwest and typically verge (sinistrally) towards the south. Major, composite D1–D3 tectonic slides are developed in the Argyll Group. Structural and stratigraphic relationships indicate that D1 induced large-scale reversals in younging across tectonic slides, resulting in reversals in subsequent F2 and F3 facing patterns. Tectonic sliding is associated with an intensification of strain demonstrated by increasingly intrafolial and curvilinear folding, together with extensional crenulations, sheared quartz pods and metre-scale asymmetric boudinage of metadolerites, all of which indicate dextral (D2) and sinistral (D3) shear. After unfolding subsequent folds (F4), this corresponds to top-to-the-north (D2) and top-to-the-south (D3) translations. D4 results in regionally northwest-verging structures, with minor crenulations and the S4 cleavage transecting fold hinges in an anticlockwise sense, suggesting a dextral component of deformation. The detailed kinematic data indicate that the overall geometry of this western, deep-level arm of the root zone is not a product of the classic mushrooming fountain of nappes model, but rather major interference between consistent northerly directed D2 thrusting and a later phase of southeast-directed (D3) retrocharriage (‘back-folding’) which intensifies towards the south.

There are no comments for this item.

Log in to your account to post a comment.

Copyright © 2019 Geological Survey & Mines Bureau. All Rights Reserved.

Developed in Association with Finco Technologies (Pvt) Ltd

Powered by Koha