logo
Normal view MARC view ISBD view

Sedimentation and volcanism linked to multiphase rifting in an Oligo-Miocene intra-arc basin, Anglona, Sardinia

By: Sowerbutts, Alison.
Material type: ArticleArticleDescription: 395-418pp ; Illustration.Subject(s): Sedimentation - Oligo miocene intra-arc basin - Anglona - Sardinia | Volcanism - Oligo miocene intra-arc basin - Anglona - Sardinia | Geophysical methods - Anglona - Sardinia | Synsedimentary processes - Anglona - Sardinia In: Geological magazine : Vol. 137 Iss. 1-6 Year. 2000Summary: Abstract Three extensional phases can be recognized in the northern, Anglona area of the Oligo-Miocene Sardinian Rift during a fifteen million year period which spanned Corsica–Sardinia continental microplate separation and Western Mediterranean back-arc basin opening. In response to this multiphase rifting, a complex facies architecture involving clastic, carbonate and volcanic rocks developed. Integrated onshore facies and structural analysis, dating and offshore seismic data are here used to reconstruct the tectono-stratigraphic history of the Anglona area. Initial late Oligocene extension created a half-graben geometry with syn-rift clastic deposits shed locally from fault-bounded highs, passing laterally to lacustrine marlstones. Calc-alkaline volcanic activity subsequently predominated as volcanic centres developed along one half-graben bounding fault. Voluminous pyroclastic and epiclastic material was supplied to the adjacent half-graben accommodation space and was deposited in marginal to marine conditions. Second-phase mid-Aquitanian–early Burdigalian extensional faulting, recognized from localized clastic syn-rift stratal wedges, truncated and subdivided the half-graben. The syn-rift sediments were sealed by a regionally correlated ignimbrite that in turn was offset by late second-phase faulting. Third-phase extensional fault movement which reactivated the original fault trend then occurred. A perched lake developed in the resultant topography coeval with the progressive marine transgression of lower areas. As sea-level rose during mid-Burdigalian times, reefal carbonates and grainstones developed on fault-block highs whilst calcarenites and marlstones were deposited in hangingwall locations. Initial extension was coeval with the formation of the Sardinian proto-rift and the initiation of the Western Mediterranean basin. Second-phase faulting occurred as the Corsica–Sardinia microplate rotated to its present position during Western Mediterranean back-arc basin spreading. Final extension can be correlated to a second major extension phase along the Oligo-Miocene Sardinian Rift following back-arc basin opening, as extension was transferred towards the fore-arc. In Anglona, the main influence of multiphase tectonism was on rift topography, providing accommodation space and localized uplifted source areas. Varying relative sea-level mainly controlled the broad types of facies belts that developed. Contemporaneous calc-alkaline volcanism played a major role in the supply of basin filling material and in changing the topography locally.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode
Article Article Library and Information Centre
Periodical Section
Bound Journal Collection Not for loan 002521_74
Serials/Scientific Journal Serials/Scientific Journal Library and Information Centre
Periodical Section
Bound Journal Collection 550 GEO (Browse shelf) Available 002521

Abstract
Three extensional phases can be recognized in the northern, Anglona area of the Oligo-Miocene Sardinian Rift during a fifteen million year period which spanned Corsica–Sardinia continental microplate separation and Western Mediterranean back-arc basin opening. In response to this multiphase rifting, a complex facies architecture involving clastic, carbonate and volcanic rocks developed. Integrated onshore facies and structural analysis, dating and offshore seismic data are here used to reconstruct the tectono-stratigraphic history of the Anglona area. Initial late Oligocene extension created a half-graben geometry with syn-rift clastic deposits shed locally from fault-bounded highs, passing laterally to lacustrine marlstones. Calc-alkaline volcanic activity subsequently predominated as volcanic centres developed along one half-graben bounding fault. Voluminous pyroclastic and epiclastic material was supplied to the adjacent half-graben accommodation space and was deposited in marginal to marine conditions. Second-phase mid-Aquitanian–early Burdigalian extensional faulting, recognized from localized clastic syn-rift stratal wedges, truncated and subdivided the half-graben. The syn-rift sediments were sealed by a regionally correlated ignimbrite that in turn was offset by late second-phase faulting. Third-phase extensional fault movement which reactivated the original fault trend then occurred. A perched lake developed in the resultant topography coeval with the progressive marine transgression of lower areas. As sea-level rose during mid-Burdigalian times, reefal carbonates and grainstones developed on fault-block highs whilst calcarenites and marlstones were deposited in hangingwall locations. Initial extension was coeval with the formation of the Sardinian proto-rift and the initiation of the Western Mediterranean basin. Second-phase faulting occurred as the Corsica–Sardinia microplate rotated to its present position during Western Mediterranean back-arc basin spreading. Final extension can be correlated to a second major extension phase along the Oligo-Miocene Sardinian Rift following back-arc basin opening, as extension was transferred towards the fore-arc. In Anglona, the main influence of multiphase tectonism was on rift topography, providing accommodation space and localized uplifted source areas. Varying relative sea-level mainly controlled the broad types of facies belts that developed. Contemporaneous calc-alkaline volcanism played a major role in the supply of basin filling material and in changing the topography locally.

There are no comments for this item.

Log in to your account to post a comment.

Copyright © 2019 Geological Survey & Mines Bureau. All Rights Reserved.

Developed in Association with Finco Technologies (Pvt) Ltd

Powered by Koha