logo
Normal view MARC view ISBD view

Neoproterozoic extensional detachment in central Madagascar : Implications for the collapse of the East African Orogen

By: Collins, Alan S.
Contributor(s): Razakamanana, Theodore | Windley, Brian F.
Material type: ArticleArticleDescription: 39-51pp ; Illustration.Subject(s): Neoproterozoic - Central Madagascar | Eastern African orogen | Betsileo shear zone - Central Madagascar - Africa | Metasedimentary rock - Central Madagascar - Africa In: Geological magazine : Vol. 137 Iss. 1-6 Year. 2000Summary: Abstract A laterally extensive, Neoproterozoic extensional detachment (the Betsileo shear zone) is recognized in central Madagascar separating the Itremo sheet (consisting of Palaeoproterozoic to Mesoproterozoic sediments and underlying basement rocks) from the Antananarivo block (Archaean/Palaeoproterozoic crust re-metamorphosed in the Neoproterozoic). Non-coaxial deformation gradually increases to a maximum at a lithological contrast between the granitoids and gneisses of the footwall and the metasedimentary rocks of the hangingwall. Ultramylonites at this highest-strained zone show mineral-elongation lineations that plunge to the southwest. σ-, δ- and C/S-type fabrics imply top-to-the-southwest extensional shear sense. Contrasting metamorphic grades are found either side of the shear zone. In the north, where this contrast is greatest, amphibolite-grade footwall rocks are juxtaposed with lower-greenschist-grade hangingwall rocks. The metamorphic grade in the hangingwall increases to the south, suggesting that a crustal section is preserved. The Betsileo shear zone facilitated crustal-scale extensional collapse of the East African Orogeny, and thus represents a previously poorly recognized structural phase in the story of Gondwanan amalgamation. Granitic magmatism and granulite/amphibolite-grade metamorphism in the footwall are all associated with formation of the Betsileo shear zone, making recognition of this detachment important in any attempt to understand the tectonic evolution of central Gondwana.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode
Article Article Library and Information Centre
Periodical Section
Bound Journal Collection Not for loan 002521_04
Serials/Scientific Journal Serials/Scientific Journal Library and Information Centre
Periodical Section
Bound Journal Collection 550 GEO (Browse shelf) Available 002521

Abstract
A laterally extensive, Neoproterozoic extensional detachment (the Betsileo shear zone) is recognized in central Madagascar separating the Itremo sheet (consisting of Palaeoproterozoic to Mesoproterozoic sediments and underlying basement rocks) from the Antananarivo block (Archaean/Palaeoproterozoic crust re-metamorphosed in the Neoproterozoic). Non-coaxial deformation gradually increases to a maximum at a lithological contrast between the granitoids and gneisses of the footwall and the metasedimentary rocks of the hangingwall. Ultramylonites at this highest-strained zone show mineral-elongation lineations that plunge to the southwest.

σ-, δ- and C/S-type fabrics imply top-to-the-southwest extensional shear sense. Contrasting metamorphic grades are found either side of the shear zone. In the north, where this contrast is greatest, amphibolite-grade footwall rocks are juxtaposed with lower-greenschist-grade hangingwall rocks. The metamorphic grade in the hangingwall increases to the south, suggesting that a crustal section is preserved.

The Betsileo shear zone facilitated crustal-scale extensional collapse of the East African Orogeny, and thus represents a previously poorly recognized structural phase in the story of Gondwanan amalgamation. Granitic magmatism and granulite/amphibolite-grade metamorphism in the footwall are all associated with formation of the Betsileo shear zone, making recognition of this detachment important in any attempt to understand the tectonic evolution of central Gondwana.

There are no comments for this item.

Log in to your account to post a comment.

Copyright © 2019 Geological Survey & Mines Bureau. All Rights Reserved.

Developed in Association with Finco Technologies (Pvt) Ltd

Powered by Koha