logo
Normal view MARC view ISBD view

Geochemistry, mineral chemistry and petrogenesis of a neoproterozoic dyke swarm in the North Eastern Desert, Egypt

By: Dawoud, M.
Contributor(s): Eliwa, H.A | Traversa, G | Attia, M.S | Itaya, T.
Material type: ArticleArticleDescription: 115-135pp ; Illustration.Subject(s): Arabian-Nubian shield | Neoproterozoic | Egypt | Extension | Lithosphere In: Geological magazine : Vol. 143 Iss. 1-6 Year. 2006Summary: Dyke swarms traverse Neoproterozoic rocks in the Hawashiya region in the extreme northern part of the Eastern Desert of Egypt. They are a suite of basaltic andesite and andesite mafic dykes, and dacitic and rhyolitic felsic dykes. The mafic dyke suite is more abundant in the younger granites (577 ± 6 Ma) than in the older granitoids (614 Ma), in which the felsic dykes are the most common. The dyke swarms trend predominantly NE–SW, and the felsic dyke suite is older than the mafic dyke suite. Both dyke suites are calc-alkaline (alkaline dykes are rare) and are relatively poor in TiO2 and Nb but enriched in the incompatible elements and HFSE. The felsic dyke suite is enriched in REE and is strongly LREE fractionated relative to the mafic dyke suite. Although the Hawashiya dykes were emplaced at the end of the Neoproterozoic era in an extensional tectonic setting, they have geochemical characteristics that are consistent with a subduction-related regime. These chemical signatures were inherited from the lithospheric rocks that produced their host Hawashiya granitoids. The felsic dyke suite magma may be derived from crustal rocks (essential source component) by partial melting. The mafic dyke suite magma was generated from a lithospheric mantle and has undergone fractional crystallization of plagioclase, amphibole, clinopyroxene and magnetite, as documented by major and trace elements fractionation modelling.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode
Article Article Library and Information Centre
Periodical Section
Bound Journal Collection Not for loan 002538_08
Serials/Scientific Journal Serials/Scientific Journal Library and Information Centre
Periodical Section
Bound Journal Collection 550 GEO (Browse shelf) Available 002538

Dyke swarms traverse Neoproterozoic rocks in the Hawashiya region in the extreme northern part of the Eastern Desert of Egypt. They are a suite of basaltic andesite and andesite mafic dykes, and dacitic and rhyolitic felsic dykes. The mafic dyke suite is more abundant in the younger granites (577 ± 6 Ma) than in the older granitoids (614 Ma), in which the felsic dykes are the most common. The dyke swarms trend predominantly NE–SW, and the felsic dyke suite is older than the mafic dyke suite. Both dyke suites are calc-alkaline (alkaline dykes are rare) and are relatively poor in TiO2 and Nb but enriched in the incompatible elements and HFSE. The felsic dyke suite is enriched in REE and is strongly LREE fractionated relative to the mafic dyke suite. Although the Hawashiya dykes were emplaced at the end of the Neoproterozoic era in an extensional tectonic setting, they have geochemical characteristics that are consistent with a subduction-related regime. These chemical signatures were inherited from the lithospheric rocks that produced their host Hawashiya granitoids. The felsic dyke suite magma may be derived from crustal rocks (essential source component) by partial melting. The mafic dyke suite magma was generated from a lithospheric mantle and has undergone fractional crystallization of plagioclase, amphibole, clinopyroxene and magnetite, as documented by major and trace elements fractionation modelling.

There are no comments for this item.

Log in to your account to post a comment.

Copyright © 2019 Geological Survey & Mines Bureau. All Rights Reserved.

Developed in Association with Finco Technologies (Pvt) Ltd

Powered by Koha