logo
Normal view MARC view ISBD view

Origin of convoluted laminae

By: Sanders, John E.
Material type: ArticleArticleDescription: 409-421p ; Illustration.Subject(s): Physical geology | Sedimentation | Formation | Convoluted laminae In: Geological magazine : Vol 97 Iss. 1-6 Year. 1960Summary: Abstract Comparison of streaked-out “ripples” formed by the drag effects of a current passing over a watery, yet cohesive sediment bottom with convoluted laminae formed within beds of fine-grained sandstone suggests a common origin. Application of Bagnold's recent discoveries on the behaviour of cohesionless sediment in flowing fluids to the problem results in a modification of Kuenen's hypothesis of origin of the convolutions. According to the new interpretation, convolutions arise when formerly cohesionless sand grains become cohesive after deposition and respond to increased shearing due to higher current velocity by a décollementtype of adjustment with the plane or planes of adjustment located within, or in some cases at or below the base of the growing sandstone bed. Convolute “anticlines” in cohesive sand are thought to serve the same function as that played by current ripple-marks in cohesionless sand, i.e., they create additional bottom relief in order to increase the drag and restore equilibrium to the added shearing stress imposed by the current that cannot be counterbalanced by grain-to-grain encounters.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode
Article Article Library and Information Centre
Periodical Section
Bound Journal Collection Not for loan 002545_65
Serials/Scientific Journal Serials/Scientific Journal Library and Information Centre
Periodical Section
Bound Journal Collection 550 GEO (Browse shelf) Damaged 002545

Abstract
Comparison of streaked-out “ripples” formed by the drag effects of a current passing over a watery, yet cohesive sediment bottom with convoluted laminae formed within beds of fine-grained sandstone suggests a common origin. Application of Bagnold's recent discoveries on the behaviour of cohesionless sediment in flowing fluids to the problem results in a modification of Kuenen's hypothesis of origin of the convolutions. According to the new interpretation, convolutions arise when formerly cohesionless sand grains become cohesive after deposition and respond to increased shearing due to higher current velocity by a décollementtype of adjustment with the plane or planes of adjustment located within, or in some cases at or below the base of the growing sandstone bed. Convolute “anticlines” in cohesive sand are thought to serve the same function as that played by current ripple-marks in cohesionless sand, i.e., they create additional bottom relief in order to increase the drag and restore equilibrium to the added shearing stress imposed by the current that cannot be counterbalanced by grain-to-grain encounters.

There are no comments for this item.

Log in to your account to post a comment.

Copyright © 2019 Geological Survey & Mines Bureau. All Rights Reserved.

Developed in Association with Finco Technologies (Pvt) Ltd

Powered by Koha