logo
Normal view MARC view ISBD view

Evolution of a non-resurgent cauldron : The late permian coombadjha volcanic complex, northeastern New South Wales, Australia

By: McPhie, J.
Material type: ArticleArticleDescription: 257-277pp ; Illustration.Subject(s): Late permian coombadjha volcanic complex - Australia | Clastic rocks | Igneous rocks | Ignimbrite | Paleozoic | Pyroclastics | Sedimentary rocks | coombadjha volcanic complex - Australia | Creek volcanics | Hianana volcanics | Babepercy volcanics In: Geological magazine : Vol. 123 Iss. 1-6 Year. 1986Summary: The Coombadjha Volcanic Complex is the remnant of a Late Permian cauldron. It is part of an extensive sequence of silicic calc-alkaline volcanics that covers the southeastern portion of the New England Orogen in NSW. The Complex is elliptical, measuring 15 × 24 km, and is outlined by a ring pluton and an arcuate fault. Bedding in the volcanic units of the Complex defines a structural basin, with steep inward dips at the monoclinal rim and gentle to horizontal orientations near the centre. An older group of outflow ignimbrites, lavas, breccias and volcaniclastic rocks at least 1500 m thick, is conformably overlain by more than 500 m of texturally homogeneous, crystal-rich, dacitic ignimbrite. Ignimbrites of the older group are the products of several discrete eruptions from separate vents, all of which were situated outside the Coombadjha area. Silicic lava domes with volcaniclastic aprons, and a tuff ring, mark the positions of local vents active on a small scale during intervals between the emplacement of the outflow ignimbrites. No significant subsidence occurred, nor did a caldera exist at this stage. Cauldron subsidence occurred in response to the large magnitude eruption that produced the crystal-rich ignimbrite. The central cauldron block was lowered at least 2000 m by downwarping and fault displacement, and remained largely intact. There is no evidence for resurgent doming of the cauldron after subsidence, although igneous activity continued with intrusion of an adamellite ring pluton along much of the cauldron margin. The crystal-rich ignimbrite and the ring pluton are similar in composition and may have been successive products of a common magma source that sustained this simple, single cauldron cycle.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode
Article Article Library and Information Centre
Periodical Section
Bound Journal Collection Not for loan 002533_49
Serials/Scientific Journal Serials/Scientific Journal Library and Information Centre
Periodical Section
Bound Journal Collection 550 GEO (Browse shelf) Available 002533

The Coombadjha Volcanic Complex is the remnant of a Late Permian cauldron. It is part of an extensive sequence of silicic calc-alkaline volcanics that covers the southeastern portion of the New England Orogen in NSW. The Complex is elliptical, measuring 15 × 24 km, and is outlined by a ring pluton and an arcuate fault. Bedding in the volcanic units of the Complex defines a structural basin, with steep inward dips at the monoclinal rim and gentle to horizontal orientations near the centre. An older group of outflow ignimbrites, lavas, breccias and volcaniclastic rocks at least 1500 m thick, is conformably overlain by more than 500 m of texturally homogeneous, crystal-rich, dacitic ignimbrite. Ignimbrites of the older group are the products of several discrete eruptions from separate vents, all of which were situated outside the Coombadjha area. Silicic lava domes with volcaniclastic aprons, and a tuff ring, mark the positions of local vents active on a small scale during intervals between the emplacement of the outflow ignimbrites. No significant subsidence occurred, nor did a caldera exist at this stage. Cauldron subsidence occurred in response to the large magnitude eruption that produced the crystal-rich ignimbrite. The central cauldron block was lowered at least 2000 m by downwarping and fault displacement, and remained largely intact. There is no evidence for resurgent doming of the cauldron after subsidence, although igneous activity continued with intrusion of an adamellite ring pluton along much of the cauldron margin. The crystal-rich ignimbrite and the ring pluton are similar in composition and may have been successive products of a common magma source that sustained this simple, single cauldron cycle.

There are no comments for this item.

Log in to your account to post a comment.

Copyright © 2019 Geological Survey & Mines Bureau. All Rights Reserved.

Developed in Association with Finco Technologies (Pvt) Ltd

Powered by Koha