logo
Normal view MARC view ISBD view

Thermal structure of crystallizing magma with two-phase convection

By: Morse, Stearns A.
Material type: ArticleArticleDescription: 205-214pp ; Illustration.Subject(s): Convection | Crystal growth | Crystallization | Genesis In: Geological magazine : Vol. 123 Iss. 1-6 Year. 1986Summary: Two-phase packets of crystals plus liquid form rapidly at a magma contact having a high thermal contrast with its surroundings. The packets can detach from an upper contact and settle rapidly with respect to crystal settling or turbulent stirring velocities. They carry crystals and supercooling downward and act as heat sinks for crystallization of floor cumulates. Evolution of picritic magma toward neutral buoyancy and overturn into overlying basalt magma proceeds most efficiently with two-phase convection. Sinking of hot bronzite-laden liquid into cooler anorthositic liquid destroys the liquid stratification within a day or so. Two-phase convection rarely yields crystal mush thicknesses suitable for compaction of cumulates, which occurs only for a narrow window of cooling rates. Two-phase convection leads to cool, thin boundary layers above and below hot interior magma and may tend to prevent or control turbulence. The critical timing and scale of two-phase layer detachment need further study.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode
Article Article Library and Information Centre
Periodical Section
Bound Journal Collection Not for loan 002533_45
Serials/Scientific Journal Serials/Scientific Journal Library and Information Centre
Periodical Section
Bound Journal Collection 550 GEO (Browse shelf) Available 002533

Two-phase packets of crystals plus liquid form rapidly at a magma contact having a high thermal contrast with its surroundings. The packets can detach from an upper contact and settle rapidly with respect to crystal settling or turbulent stirring velocities. They carry crystals and supercooling downward and act as heat sinks for crystallization of floor cumulates. Evolution of picritic magma toward neutral buoyancy and overturn into overlying basalt magma proceeds most efficiently with two-phase convection. Sinking of hot bronzite-laden liquid into cooler anorthositic liquid destroys the liquid stratification within a day or so. Two-phase convection rarely yields crystal mush thicknesses suitable for compaction of cumulates, which occurs only for a narrow window of cooling rates. Two-phase convection leads to cool, thin boundary layers above and below hot interior magma and may tend to prevent or control turbulence. The critical timing and scale of two-phase layer detachment need further study.

There are no comments for this item.

Log in to your account to post a comment.

Copyright © 2019 Geological Survey & Mines Bureau. All Rights Reserved.

Developed in Association with Finco Technologies (Pvt) Ltd

Powered by Koha