logo
Normal view MARC view ISBD view

The role of silica and iron oxide mobility in the formation of gold-bearing fluvial sediments in the Proterozoic Mporokoso Basin, northern Zambia

By: Andrews-Speed, C. P.
Material type: ArticleArticleDescription: 143-152pp ; Illustration.Subject(s): Clastic rocks | Iron oxides | Sandstore | Conglomerate | Sedimentary petrology | Mbala formation | Kabweluma formation | Nsama formation In: Geological magazine : Vol. 123 Iss. 1-6 Year. 1986Summary: Gold-bearing sandstone and conglomerate near the base of the Proterozoic Mporokoso Group were deposited in a braided river system. The detrital sand grade material is mainly of quartz, sericite and haematite, and the pebbles are of vein-quartz, chert, silicic volcanics, quartzose metasediment and jaspilite. The basement rocks presently exposed in the basement are silicic igneous rocks and quartzose metasediments. The petrography of the fluvial sediments suggests that silica and, to a lesser extent, iron oxide were mobile both in the source-area and in the braided river system. Evidence for silica-mobility includes jaspilite pebbles with spherulites and glaebules of chalcedony, abundant vein-quartz pebbles, intra-basinal sandstone pebbles, and the silicification of volcanic pebbles. The detrital haematite in the fluvial sandstone forms pseudomorphs after magmatic magnetite. Authigenic iron oxide occurs in several forms which suggest that iron oxide was mobile in the source-area and in the fluvial sediments. Uranium is locally abundant in basement and sedimentary rocks, cassiterite is a common heavy mineral in the fluvial sediments, and fluorite has been found in the basement. These features may be explained by intense weathering which mobilized both silica and iron. The silica was concentrated near the surface to form silcretes in the basement and later in the overlying fluvial sediments. Hydrothermal convection cells driven by the granites may have carried silica, iron, tin, fluorine and uranium towards the surface before and during the erosion of the igneous basement.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode
Article Article Library and Information Centre
Periodical Section
Bound Journal Collection Not for loan 002533_34
Serials/Scientific Journal Serials/Scientific Journal Library and Information Centre
Periodical Section
Bound Journal Collection 550 GEO (Browse shelf) Available 002533

Gold-bearing sandstone and conglomerate near the base of the Proterozoic Mporokoso Group were deposited in a braided river system. The detrital sand grade material is mainly of quartz, sericite and haematite, and the pebbles are of vein-quartz, chert, silicic volcanics, quartzose metasediment and jaspilite. The basement rocks presently exposed in the basement are silicic igneous rocks and quartzose metasediments.

The petrography of the fluvial sediments suggests that silica and, to a lesser extent, iron oxide were mobile both in the source-area and in the braided river system. Evidence for silica-mobility includes jaspilite pebbles with spherulites and glaebules of chalcedony, abundant vein-quartz pebbles, intra-basinal sandstone pebbles, and the silicification of volcanic pebbles. The detrital haematite in the fluvial sandstone forms pseudomorphs after magmatic magnetite. Authigenic iron oxide occurs in several forms which suggest that iron oxide was mobile in the source-area and in the fluvial sediments. Uranium is locally abundant in basement and sedimentary rocks, cassiterite is a common heavy mineral in the fluvial sediments, and fluorite has been found in the basement.

These features may be explained by intense weathering which mobilized both silica and iron. The silica was concentrated near the surface to form silcretes in the basement and later in the overlying fluvial sediments. Hydrothermal convection cells driven by the granites may have carried silica, iron, tin, fluorine and uranium towards the surface before and during the erosion of the igneous basement.

There are no comments for this item.

Log in to your account to post a comment.

Copyright © 2019 Geological Survey & Mines Bureau. All Rights Reserved.

Developed in Association with Finco Technologies (Pvt) Ltd

Powered by Koha