logo
Normal view MARC view ISBD view

Kinematic and sedimentological evolution of the Manyara Rift in northern Tanzania, East Africa

By: Ring, Uwe.
Contributor(s): Schwartz, Hilde L | Bromage, Timothy G | Sanaane, Charles.
Material type: ArticleArticleDescription: 355 - 368 pp ; Illustration.Subject(s): Sedimentology | Faults | Kinematic analysis | Extension | East African rift In: Geological magazine : Vol. 142 Iss. 1-6 Year. 2005Summary: We describe the stratigraphical/sedimentological and structural evolution of the Manyara Rift in the Tanzania Divergence Zone, East Africa. The rift-related Manyara Beds on the shoaling side of the Manyara Rift were deposited between <1.7 and 0.4 Ma and can be separated into a lacustrine lower member and a fluvial upper member. The transition from lacustrine to fluvial sedimentation at ∼ 0.7 Ma appears to be related to a southward shift of major rift faulting. Fault geometry and the kinematics of the faults are consistent with major faulting during NE/E-directed extension. There is also evidence for other extensional directions including radial extension, which might be caused by magmatic activity and/or might reflect oblate strain symmetry where the East African Rift propagated into the Archaean Tanzania Craton and associated termination of rifting caused an increase in the strained area.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode
Article Article Library and Information Centre
Periodical Section
Bound Journal Collection Not for loan 002527_78
Serials/Scientific Journal Serials/Scientific Journal Library and Information Centre
Periodical Section
Bound Journal Collection 550 GEO (Browse shelf) Available 002527

We describe the stratigraphical/sedimentological and structural evolution of the Manyara Rift in the Tanzania Divergence Zone, East Africa. The rift-related Manyara Beds on the shoaling side of the Manyara Rift were deposited between <1.7 and 0.4 Ma and can be separated into a lacustrine lower member and a fluvial upper member. The transition from lacustrine to fluvial sedimentation at ∼ 0.7 Ma appears to be related to a southward shift of major rift faulting. Fault geometry and the kinematics of the faults are consistent with major faulting during NE/E-directed extension. There is also evidence for other extensional directions including radial extension, which might be caused by magmatic activity and/or might reflect oblate strain symmetry where the East African Rift propagated into the Archaean Tanzania Craton and associated termination of rifting caused an increase in the strained area.

There are no comments for this item.

Log in to your account to post a comment.

Copyright © 2019 Geological Survey & Mines Bureau. All Rights Reserved.

Developed in Association with Finco Technologies (Pvt) Ltd

Powered by Koha