logo
Normal view MARC view ISBD view

The first 40Ar–39Ar date from oxfordian ammonite - Calibrated volcanic layers (bentonites) as a tie - Point for the late jurassic

By: Pellenard, P.
Contributor(s): Nomade, S | Ramalho, F.De Oliveria | Monna, F | Guillou, H.
Material type: ArticleArticleDescription: 1136-1142pp ; Illustration.Subject(s): Geochronology | Palaeovolcanism | Bentonite | Oxfordian | Jurassic time scale In: Geological magazine : Vol. 150 Iss. 1-6 Year. 2013Summary: Eight volcanic ash layers, linked to large explosive events caused by subduction-related volcanism from the Vardar Ocean back-arc, interbedded with marine limestones and cherts, have been identified in the Rosso Ammonitico Veronese Formation (northeastern Italy). The thickest ash layer, attributed to the Gregoryceras transversarium ammonite Biozone (Oxfordian Stage), yields a precise and reliable 40Ar–39Ar date of 156.1 ± 0.89 Ma, which is in better agreement with GTS2004 boundaries than with the current GTS2012. This first biostratigraphically well-constrained Oxfordian date is proposed as a new radiometric tie-point to improve the Geologic Time Scale for the Late Jurassic, where ammonite-calibrated radiometric dates are particularly scarce.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode
Article Article Library and Information Centre
Periodical Section
Bound Journal Collection Not for loan 002531_74
Serials/Scientific Journal Serials/Scientific Journal Library and Information Centre
Periodical Section
Bound Journal Collection 550 GEO (Browse shelf) Available 002531

Eight volcanic ash layers, linked to large explosive events caused by subduction-related volcanism from the Vardar Ocean back-arc, interbedded with marine limestones and cherts, have been identified in the Rosso Ammonitico Veronese Formation (northeastern Italy). The thickest ash layer, attributed to the Gregoryceras transversarium ammonite Biozone (Oxfordian Stage), yields a precise and reliable 40Ar–39Ar date of 156.1 ± 0.89 Ma, which is in better agreement with GTS2004 boundaries than with the current GTS2012. This first biostratigraphically well-constrained Oxfordian date is proposed as a new radiometric tie-point to improve the Geologic Time Scale for the Late Jurassic, where ammonite-calibrated radiometric dates are particularly scarce.

There are no comments for this item.

Log in to your account to post a comment.

Copyright © 2019 Geological Survey & Mines Bureau. All Rights Reserved.

Developed in Association with Finco Technologies (Pvt) Ltd

Powered by Koha