logo
Normal view MARC view ISBD view

The magmatic evolution of the late miocene laccolith–pluton–dyke granitic complex of Elba island, Italy

By: Dini, A.
Contributor(s): Innocenti, F | Rocchi, S | Tonarini, S | Westerman, D.S.
Material type: ArticleArticleDescription: 257-279p ; Illustration.Subject(s): Magmatic evolution - Late miocene laccolith - Elba island - Italy | Magmatic evolution - Late miocene pluton dyke - Granitic complex - Elba island - Italy | Mineral composition - Granitic complex - Elba island - Italy In: Geological magazine : Vol. 139 Iss. 1-6 Year. 2002Summary: Abstract Since late Miocene time, post-collisional extension of the internal parts of the Apennine orogenic belt has led to the opening of the Tyrrhenian basin. Extensive, mainly acidic peraluminous magmatism affected the Tuscan Archipelago and the Italian mainland during this time, building up the Tuscan Magmatic Province as the fold belt was progressively thinned, heated and intruded by mafic magmas. An intrusive complex was progressively built on western Elba Island by emplacement, within a stack of nappes, of multiple, shallow-level porphyritic laccoliths, a major pluton, and a final dyke swarm, all within the span from about 8 to 6.8 Ma. New geochemical and Sr–Nd isotopic investigations constrain the compositions of materials involved in the genesis of the magmas of Elba Island compared to the whole Tuscan Magmatic Province. Several distinct magma sources, in both the crust and mantle, have been identified as contributing to the Elba magmatism as it evolved from crust-, to hybrid-, to mantle-dominated. However, a restricted number of components, geochemically similar to mafic K-andesites of the Island of Capraia and crustal melts like the Cotoncello dyke at Elba, are sufficient to account for the generation by melt hybridization of the most voluminous magmas (c. εNd(t) −8.5, 87Sr/86Sr 0.715). Unusual magmas were emplaced at the beginning and end of the igneous activity, without contributing to the generation of these hybrid magmas. These are represented by early peraluminous melts of a different crustal origin (εNd(t) between −9.5 and −10.0, 87Sr/86Sr variable between 0.7115 and 0.7146), and late mantle-derived magma strongly enriched in incompatible elements (εNd(t) = −7.0, 87Sr/86Sr = 0.7114) with geochemical–isotopic characteristics intermediate between contemporaneous Capraia K-andesites and later lamproites from the Tuscan Magmatic Province. Magmas not involved in the generation of the main hybrid products are not volumetrically significant, but their occurrence emphasizes the highly variable nature of crust and mantle sources that can be activated in a short time span during post-collisional magmatism.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode
Article Article Library and Information Centre
Periodical Section
Bound Journal Collection Not for loan 002519_38
Serials/Scientific Journal Serials/Scientific Journal Library and Information Centre
Periodical Section
Bound Journal Collection 550 GEO (Browse shelf) Available 002519

Abstract
Since late Miocene time, post-collisional extension of the internal parts of the Apennine orogenic belt has led to the opening of the Tyrrhenian basin. Extensive, mainly acidic peraluminous magmatism affected the Tuscan Archipelago and the Italian mainland during this time, building up the Tuscan Magmatic Province as the fold belt was progressively thinned, heated and intruded by mafic magmas. An intrusive complex was progressively built on western Elba Island by emplacement, within a stack of nappes, of multiple, shallow-level porphyritic laccoliths, a major pluton, and a final dyke swarm, all within the span from about 8 to 6.8 Ma. New geochemical and Sr–Nd isotopic investigations constrain the compositions of materials involved in the genesis of the magmas of Elba Island compared to the whole Tuscan Magmatic Province. Several distinct magma sources, in both the crust and mantle, have been identified as contributing to the Elba magmatism as it evolved from crust-, to hybrid-, to mantle-dominated. However, a restricted number of components, geochemically similar to mafic K-andesites of the Island of Capraia and crustal melts like the Cotoncello dyke at Elba, are sufficient to account for the generation by melt hybridization of the most voluminous magmas (c. εNd(t) −8.5, 87Sr/86Sr 0.715). Unusual magmas were emplaced at the beginning and end of the igneous activity, without contributing to the generation of these hybrid magmas. These are represented by early peraluminous melts of a different crustal origin (εNd(t) between −9.5 and −10.0, 87Sr/86Sr variable between 0.7115 and 0.7146), and late mantle-derived magma strongly enriched in incompatible elements (εNd(t) = −7.0, 87Sr/86Sr = 0.7114) with geochemical–isotopic characteristics intermediate between contemporaneous Capraia K-andesites and later lamproites from the Tuscan Magmatic Province. Magmas not involved in the generation of the main hybrid products are not volumetrically significant, but their occurrence emphasizes the highly variable nature of crust and mantle sources that can be activated in a short time span during post-collisional magmatism.

There are no comments for this item.

Log in to your account to post a comment.

Copyright © 2019 Geological Survey & Mines Bureau. All Rights Reserved.

Developed in Association with Finco Technologies (Pvt) Ltd

Powered by Koha